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TARGET PROBLEM

Some example of vector field sources in nature
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TARGET PROBLEM

* Point source (punktkallan)
It is a single identifiable localized source with negligible extent.

In some particular conditions,
(for example: 3D space, emission homogenous in all directions, no absorption and no loss...)

the field produced by a point source decreases with r?2

(dipolskallan)

Two identical but opposite sources (i.e. a source and a sink)
separated by a distance d.

« Vortex (virveltraden)

The velocity field in a water vortex
Magnetic field around a straight wire



POINT SOURCE

A single identifiable localized source with negligible extent.

Let’s calculate the velocity field of the water
that flows from a thin pipe into a large pool.

:

Assumptions:

1- The source is homogeneous in time
I.e. the flow of the water from the pipe
Is constant: F=Volume/time=constant

2- The emission is homogeneous in all
directions

3- No absorption, no losses

Then:

F=S.V _F . \
_ > V=—-"x§

S =47zr2er Arr

In a 3D space, the vector field generated by a point sourceis: | A(T) = %ér




POINT SOURCE

The vector field generated by a point source located in the origin is:

—- q ~
A(r) = —Zer
r
When the source is not in the origin:
r-r' - ..
A(T) = q| | where T Is the position of the source
r-r

» Electrostatic field produced by a point charge:

e with s=—3
Are, ¥ Are,

« Gravitational field produced by a mass M:

1

g=-GM =¢, with s=-GM
r




POINT SOURCE

(with S boundary of the volume V) is:
THEOREM 1 (11.1 in the book)

q. .= |0 I the source is outside V
6 5
I
S

AQ  If the source is inside V

The flux produced by a point source through a closed surface S

PROOF

1. The origin is outside V

In V the field is continuously differentiable,
so we can apply the Gauss’ theorem:

A

ff ke, a5 = [[faw] e, Jav

v




2. The origin is inside V
The field is not continuous in V,
since the origin is a singular point.
So the Gauss’ theorem cannot be applied.

But we can divide V into two volumes:

V=V, +V.

A

V. is a “small” sphere with radius ¢

with centre on the source (the origin).
V,is the remaining part of V

Gauss’theorem: J-

V, does not S+S r N r
contain the origin 3 3

v

j%ér-ds_: - j%ér-(—ér)dszﬂ%ds = 3 {[ds = L ams® = 4rq

S, & l
Area of the sphere
with radius &



THE POTENTIAL OF A POINT SOURCE
9

The potential from a point source is: ¢ = ——+4const.
I
0P A 18¢A 1 5¢A @(1)\ J .
Infact: grad¢g=——@& +———¢, + 6, =—0—|=|& =—6
fact: gradg or " rof " rsindop ” Tarlr r’ "
=0 =0

ELECTROSTATIC FIELD FROM A POINT SOURCE

— 1 .
The electrostatic field from a point source is — g — €
Arg, T
The electrostatic potential is defined as: E-= —grad ¢E
. - 19
Therefore, the electrostatic potential is: ¢E = —
Are,
The flux of the electric field is: f E.-dS = a4 where q is the total charge inside S
g
s 0




DIPOLE SOURCE

Two identical but opposite sources (i.e. a source and a sink)
separated by a distance d. P

[ ] A7

Assume that the origin is in the middle between
the positive and the negative charge.

If r>>d
r=r. =~r
r —r_~dcosé

The potential due to the dipole is:

. q -q _r-r dcos® d-
rN=—+—-= ~ —
¢( ) r i r a rr a r? g

+ - -+

|deal dipole: qd = constant

The dipole moment is defined as: P=qd

The field generated by the dipole is: ¢(T): p-r
3
5.7 =\ r
= p-T p 3(p-T)T
E(r):—grad¢:—grad( j: LA L B = 3(D.F)F
I’3 rs ro E(T):—p3+ (p5)
r r




DIPOLE SOURCE (example)
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VORTEX (or similar fields)

Example: The velocity field in a water vortex, the magnetic field around a straight wire...

The vector field generated by a vortex has the shape:

— .\ k.
A(r)=;e¢

The circulation of this vector field is

%he -dr = 27kN
L P

THEOREM 2 (11.2in the book)

PROOF

where N is number of turns of L

around the z-axis
N is positive if the turn is along +L
N is negative if the turn is along -L

The field is singular on the z-axis.
So the Stokes’ theorem cannot be applied directly.

We consider a circular path L, with radius ¢
k . k .~ K . k
J'—e¢-dr= _[ —eq,.dr:J. —€,-dr+ | —

L P L+L,—-L.+L -1 P L+l +L -k P -L, p

| S

jrot( de+ ks df I2”E56¢é¢d¢=2ﬂk
; i p &

dr =—&€,do

Closed path that does not contam the z-axis.
We can apply the Stokes’ theorem!

10



WHICH STATEMENT 1S WRONG?

1- The vector field %ér IS produced by a point source (yellow)

r

2- The vector field hé(p can represent the velocity field of a vortex
(red) P

3- The flux of the field from a point source is always (green)

”izér~d8_:47zs
$ r

K . .
4- The circulation j—e¢ -dr = 27K if L has only one turn around z (blue)
o,
L

11



LAPLACE AND POISSON EQUATIONS
TARGET PROBLEM z

A

A sphere has radius R and charge density p=p..
Calculate:

- the electric field and

- the electrostatic potential

inside and outside the sphere.

v

From the electromagnetic theory course:

V.E=£
o
E:_V¢E

L
Therefore; V2¢E =T
&y

This equation is an example of:

Laplace’s equation | V=0

Poisson’s equation | V' ¢=p

12



SYMMETRIC SOLUTIONS

OF THE

LAPLACE EQUATION V?¢=0

PLANAR SYMMETRY ¢ = ¢(X) (NO y and z dependences)

In cartesian coord.

v2¢:[52¢+52¢+52¢j d?¢(x)
5X2 8y2 822 dXZ

=0 = |¢(x)=ax+b

CYLINDRICAL SYMMETRY ¢ = ¢(p) (NO @and z dependences)

In cylindrical coord.

. (1o og) 1 3% %% 1.d( dg(p)) do(p)
V¢_[p6p(p0pj+p28¢2+522J pdp[p dp j_o -7 -°

SPHERICAL SYMMETRY ¢ =¢(r) (NO fand ¢ dependences)

In spherical coord.

2
V= %i(rza¢j+ 21_ 0 (sin@a¢j+ - _12 a¢;
r<or or) resinf o6 06 ) r°sin“8 op

1d £r2 d¢(r)j:0:rz dg(r)
r*dr dr

r 13




LAPLACE AND POISSON EQUATIONS

If ¢ has continuous second derivatives in the volume V

and ¢ =0 on the surface S that encloses V, then the solution

THEOREM 1 azzintmevoog | 4 40 Laplace equation V¢ =0 is:

¢ (xy,2)=0 in V
PROOF
We know: V-(fV)z(Vf)-V+fV-V (ID2)
f = 2
__¢ }:> V(¢VP)=Vg-Vo+p(V-V@)=(Vg) +4V¢
V=Vg =

V($Ve)-(V) =0 :jjj[v ¢v¢ )]dvzo
jj¢v¢-ds—jﬂﬁde=o = ¢=0

V
s >0

because ¢g=0o0n S

14



DIRICHLET BOUNDARY CONDITIONS

Vig=p

¢=0 0ns
Dirichlet boundary condition

What can we say about the solution?

The Poisson’s equationV?¢ = p in the volume V

THEOREM 2 (12:3in the book) with boundary condition ¢=o on the surface S

PROOF

that encloses V has only one solution.

Let's assume that ¢, and ¢, are two solution:
Vg=p and ¢ =0 onS
Vig,=p and ¢,=c onS

Let's now define gy=¢,-¢,

V2¢o :V2(¢1_¢2):§r¢1_%¢j:0
&, :ﬁ—ﬂz:o onS

o

Due to theorem 1: #,=0 in V

h=¢,inV

15



NEUMANN BOUNDARY CONDITIONS

Vig=p
od . What can we say about the solution?
—=Nn-Vgd=y onS
on

Neumann boundary condition

The solution to the Poisson’s equation V’¢=p inV
THEOREM 3 @24in the book with boundary condition A-Vg=y» on$

is not unique. If ¢, is a solution then ¢,+c is also solution
where c is an arbitrary constant.

PROOF Let's assume that ¢, and ¢, are two solution:

~

Vig=p and A-Vg =y onS

Vi, =p and A-Vg =y onS

Let’'s now define ¢,=¢,-¢, o P

—— ——

V2¢0 =V* (¢1 _¢2) = V2¢1 _V2¢2: 0

0 = -V, =0=¢,V¢,-1=0 on S = [[4,V¢,-AdS =0
N-Ve, =A-(V4-Veg,)=0 onS S
2

—_—

>0 = @ = ¢, +const.

0= ”¢ov¢o -NdS /AZJ‘J‘JV-%V%dV < IJJ(V¢0 )2 v = Vgy=0 = ¢, =const.

see proof of
theorem 1

Gauss’ theorem

16



Thanks to Pablo

THE CAPACITOR EXAMPLE (and COMSOL)

Laplace equation
VAV =0

Boundary conditions:

Left electrode

V =0 (Dirichlet BC)
= Right electrode
V =1 (Dirichlet BC)

= To solve the problem,
COMSOL needs boundary
conditions on the floow. For
this example, insulating
boundary condition
on the floor have been
applied: (Neumann)

NnN-VV =0 (Neumann BC)

Color plot: Potential V, Arrows: Electric field, Streamlines:
Electric field, Gold: Grounded and positive electrode

17



Thanks to Pablo
(and COMSOL)
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\' % T x10° Thanks to Pablo
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TARGET PROBLEM !

A sphere has radius R and charge density p=p..
Calculate:

- the electric field and

- the electrostatic potential
inside and outside the sphere.

v

Spherical symmetry: ¢ = ¢(r)

Outside the sphere

Vige=0 = ¢ (r)=-

typically
+Db limg. (r)=0 = b=0

|

~ =

E- v - dge (r) 1dg(r 1 deg.(r) :>Eout__d¢lgm(r)__i
g dr'r dé ’rsind do ro ar  r2
Inside the sphere
g o P 1 A[L46(0))__p
Vi = &, r’ dr[r ar | g
multiplying by r2 ) d¢E (I’) ) rs d¢E (r) pr C _ 0 r2
and integrating: r =——=—+C = == = é"(r)=—°—+d
dr 3g, dr 3g, r’ - Be,

in
Ein:_d¢E (r) LR C
r dr 3¢, rz\4
Divergent at r=0
NOT physical! = ¢c=0 18



TARGET PROBLEM -

We still have to calculate a and d!

Boundary conditions:
a pR

Eout R :Ein R __% _ _
r ( ) r ( ) = R2 380 — a
out _gin _pcR2 _,OCRS —
H(R)=H(R) = o =D = 0
out _ IOCR3 Eout _ pcRS
e(r)= 3g,r ' +350r2
in () _ p.R’ _ r’ Ein _ Pl
ge ()= 6z, [3 RZJ S
E A

_pR

p.R°

v

2¢&,

vy

19
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