VEKTORANALYS

Kursvecka 6

SOME SPECIAL VECTOR FIELDS AND
 LAPLACE AND POISSON EQUATIONS

Kapitel 11-12
Sidor 123-150

TARGET PROBLEM

Some example of vector field sources in nature

TARGET PROBLEM

- Point source (punktkällan)

It is a single identifiable localized source with negligible extent.
In some particular conditions,
(for example: 3D space, emission homogenous in all directions, no absorption and no loss...) the field produced by a point source decreases with r^{2}

- Dìpole source (dipolskällan)

Two identical but opposite sources (i.e. a source and a sink) separated by a distance d.

- Vortex (virveltråden)

The velocity field in a water vortex Magnetic field around a straight wire

POINT SOURCE

A single identifiable localized source with negligible extent.
Let's calculate the velocity field of the water that flows from a thin pipe into a large pool.

Assumptions:

1- The source is homogeneous in time i.e. the flow of the water from the pipe is constant: $F=$ Volume/time = constant

2- The emission is homogeneous in all directions

3- No absorption, no losses
Then:

$$
\left.\begin{array}{l}
F=\bar{S} \cdot \bar{v} \\
\bar{S}=4 \pi r^{2} \hat{e}_{r}
\end{array}\right\} \Rightarrow \bar{v}=\frac{F}{4 \pi r^{2}} \hat{e}_{r}
$$

$$
\bar{A}(\bar{r})=\frac{q}{r^{2}} \hat{e}_{r}
$$

POINT SOURCE

The vector field generated by a point source located in the origin is:

$$
\bar{A}(\bar{r})=\frac{q}{r^{2}} \hat{e}_{r}
$$

When the source is not in the origin:

$$
\bar{A}(\bar{r})=q \frac{\bar{r}-\bar{r}^{\prime}}{|\bar{r}-\bar{r}|^{3}}
$$

where \bar{r}^{\prime} is the position of the source

- Electrostatic field produced by a point charge:

$$
\bar{E}=\frac{q}{4 \pi \varepsilon_{0}} \frac{1}{r^{2}} \hat{e}_{r} \quad \text { with } \quad s=\frac{q}{4 \pi \varepsilon_{0}}
$$

- Gravitational field produced by a mass M :

$$
\bar{g}=-G M \frac{1}{r^{2}} \hat{e}_{r} \quad \text { with } \quad s=-G M
$$

POINT SOURCE

The flux produced by a point source through a closed surface S (with S boundary of the volume V) is:

$$
\oiiint_{S} \frac{q}{r^{2}} \hat{e}_{r} \cdot d \bar{S}= \begin{cases}0 & \text { If the source is outside } V \\ 4 \pi q & \text { If the source is inside } V\end{cases}
$$

PROOF

1. The origin is outside V

In V the field is continuously differentiable, so we can apply the Gauss' theorem:

$$
\begin{aligned}
& \notint_{S} \frac{q}{r^{2}} \hat{e}_{r} \cdot d \bar{S}=\iiint_{V} \operatorname{div}\left(\frac{q}{r^{2}} \hat{e}_{r}\right) d V \\
& \operatorname{div}\left(\frac{q}{r^{2}} \hat{e}_{r}\right)=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{q}{r^{2}}\right)=0 \\
& \Rightarrow \notint_{S} \frac{q}{r^{2}} \hat{e}_{r} \cdot d \bar{S}=0
\end{aligned}
$$

2. The origin is inside V

The field is not continuous in V , since the origin is a singular point. So the Gauss' theorem cannot be applied.

But we can divide V into two volumes:

$$
V=V_{0}+V_{\varepsilon}
$$

V_{ε} is a "small" sphere with radius ε with centre on the source (the origin). V_{o} is the remaining part of V

$$
\iint_{S} \frac{q}{r^{2}} \hat{e}_{r} \cdot d \bar{S}=\iint_{S+S_{\varepsilon}-S_{\varepsilon}} \frac{q}{r^{2}} \hat{e}_{r} \cdot d \bar{S}=
$$

$\begin{gathered}\text { Gausstherem: } \\ \text { hideosnot } \\ \text { contain the origin }\end{gathered} \iint_{S+S_{\varepsilon}} \frac{q}{r^{2}} \hat{e}_{r} \cdot d \bar{S}+\iint_{-S_{\varepsilon}} \frac{q}{r^{2}} \hat{e}_{r} \cdot d \bar{S}=$

$$
\iiint_{V_{0}} \underbrace{\operatorname{div}\left(\frac{q}{r^{2}} \hat{e}_{r}\right)}_{=0} d V-\iint_{S_{\varepsilon}} \frac{q}{r^{2}} \hat{e}_{r} \cdot d \bar{S}=-\iint_{S_{\varepsilon}} \frac{q}{r^{2}} \hat{e}_{r} \cdot \underbrace{\left(-\hat{e}_{r}\right)}_{\substack{\downarrow \\
\hat{n}_{\varepsilon}=-\hat{e}_{r}}} d S=\iint_{S_{\varepsilon}} \frac{q}{\varepsilon^{2}} d S=\frac{q}{\varepsilon^{2}} \iint_{S_{\varepsilon}} d S=\frac{q}{\varepsilon^{2}} \underbrace{}_{\left.\begin{array}{c}
\downarrow \\
\begin{array}{c}
\text { Area of the sphere } \\
\text { with radius } \varepsilon
\end{array}
\end{array}\right)=4 \pi q}
$$

THE POTENTIAL OF A POINT SOURCE

The potential from a point source is:

$$
\phi=-\frac{q}{r}+\text { const }
$$

ELECTROSTATIC FIELD FROM A POINT SOURCE

The electrostatic field from a point source is $\bar{E}=\frac{q}{4 \pi \varepsilon_{0}} \frac{1}{r^{2}} \hat{e}_{r}$
The electrostatic potential is defined as: $\quad \bar{E}=-\operatorname{grad} \phi_{E}$
Therefore, the electrostatic potential is: $\phi_{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}$

The flux of the electric field is: $\iint_{S} \bar{E} \cdot d \bar{S}=\frac{q}{\varepsilon_{0}} \quad$ where q is the total charge inside S

DIPOLE SOURCE

Two identical but opposite sources (i.e. a source and a sink) separated by a distance d.
Assume that the origin is in the middle between the positive and the negative charge.

$$
\begin{aligned}
& \text { If } \quad r \gg d \\
& r \approx r_{+} \approx r_{-} \\
& r_{-}-r_{+} \approx d \cos \theta
\end{aligned}
$$

The potential due to the dipole is:

$$
\phi(\bar{r})=\frac{q}{r_{+}}+\frac{-q}{r_{-}}=q \frac{r_{-}-r_{+}}{r_{-} r_{+}} \approx q \frac{d \cos \theta}{r^{2}}=q \frac{\bar{d} \cdot \bar{r}}{r^{3}}
$$

Ideal dipole: $q d=$ constant
The dipole moment is defined as: $\quad \bar{p} \equiv q \bar{d}$
The field generated by the dipole is:

$$
\bar{E}(\bar{r})=-\operatorname{grad} \phi=-\operatorname{grad}\left(\frac{\bar{p} \cdot \bar{r}}{r^{3}}\right)=-\frac{\bar{p}}{r^{3}}+\frac{3(\bar{p} \cdot \bar{r}) \bar{r}}{r^{5}}
$$

$\phi(\bar{r})=\frac{\bar{p} \cdot \bar{r}}{r^{3}}$
$\bar{E}(\bar{r})=-\frac{\bar{p}}{r^{3}}+\frac{3(\bar{p} \cdot \bar{r}) \bar{r}}{r^{5}}$

DIPOLE SOURCE (example)

$$
\begin{aligned}
& \phi(\bar{r})=\frac{q}{r_{+}}-\frac{q}{r_{-}} \\
& \phi(\bar{r})=q \frac{d \cos \theta}{r^{2}}
\end{aligned}
$$

VORTEX (or similar fields)

Example: The velocity field in a water vortex, the magnetic field around a straight wire...
The vector field generated by a vortex has the shape: $\quad \bar{A}(\bar{r})=\frac{k}{\rho} \hat{e}_{\varphi}$
The circulation of this vector field is
THEOREM 2 (11.2 in the book)

$$
\oint_{L} \frac{k}{\rho} \hat{e}_{\varphi} \cdot d \bar{r}=2 \pi k N
$$

where N is number of turns of L around the Z-axis
N is positive if the turn is along $+L$ N is negative if the turn is along $-L$

PROOF

The field is singular on the z-axis.
So the Stokes' theorem cannot be applied directly.
We consider a circular path L_{ε} with radius ε

$$
\begin{aligned}
& \int_{L} \frac{k}{\rho} \hat{e}_{\varphi} \cdot d \bar{r}=\int_{L+L_{\varepsilon}-L_{\varepsilon}+L_{1}-L_{1}} \frac{k}{\rho} \hat{e}_{\varphi} \cdot d \bar{r}=\int_{L+L_{\varepsilon}+L_{1}-L_{1}} \frac{k}{\rho} \hat{e}_{\varphi} \cdot d \bar{r}+\int_{-L_{\varepsilon}} \frac{k}{\rho} \hat{e}_{\varphi} \cdot d \bar{r}= \\
& \iint_{S} r o t\left(\frac{k}{\rho} \hat{e}_{\varphi}\right) \cdot d \bar{S}+\int_{-L_{\varepsilon}} \frac{k}{\rho} \hat{e}_{\varphi,}, d \bar{r}=\int_{0}^{2 \pi} \frac{k}{\varepsilon} \underbrace{\varepsilon \hat{e}_{\varphi} \hat{e}_{\varphi} d \varphi}_{d \bar{p}=-\varepsilon \hat{e}_{\varphi} d \varphi}=2 \pi{ }_{l}^{\text {Closed path that does not contain the z-axis. }} \begin{array}{l}
\text { We can apply the Stokes'theorem! }
\end{array}
\end{aligned}
$$

WHICH STATEMENT IS WRONG?

1- The vector field $\frac{q}{r^{2}} \hat{e}_{r}$ is produced by a point source (yellow)
2- The vector field $\frac{k}{\rho} \hat{e}_{\varphi}$ can represent the velocity field of a vortex
(red)
3- The flux of the field from a point source is always (green)

$$
\iint_{S} \frac{s}{r^{2}} \hat{e}_{r} \cdot d \bar{S}=4 \pi s
$$

4- The circulation $\int_{L} \frac{k}{\rho} \hat{e}_{\varphi} \cdot d \bar{r}=2 \pi k$ if L has only one turn around z (blue)

LAPLACE AND POISSON EQUATIONS TARGET PROBLEM

A sphere has radius R and charge density $\rho=\rho_{c}$.
Calculate:

- the electric field and
- the electrostatic potential
inside and outside the sphere.
From the electromagnetic theory course:

$$
\begin{aligned}
& \nabla \cdot \bar{E}=\frac{\rho_{c}}{\varepsilon_{0}} \\
& \bar{E}=-\nabla \phi_{E}
\end{aligned}
$$

Therefore: $\quad \nabla^{2} \phi_{E}=-\frac{\rho_{c}}{\varepsilon_{0}}$
This equation is an example of:

Laplace's equation	$\nabla^{2} \phi=0$
Poisson's equation	$\nabla^{2} \phi=\rho$

SYMMETRIC SOLUTIONS

OF THE

LAPLACE EQUATION $\nabla^{2} \phi=0$

PLANAR SYMMETRY
 $$
\phi=\phi(x)
$$
 (NO y and z dependences)

In cartesian coord.

$$
\nabla^{2} \phi=\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}\right)
$$

$$
\frac{d^{2} \phi(x)}{d x^{2}}=0 \Rightarrow \phi(x)=a x+b
$$

CYLINDRICAL SYMIMETRY $\quad \phi=\phi(\rho) \quad$ (NO φ and z dependences)
In cylindrical coord.
$\nabla^{2} \phi=\left(\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial \phi}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} \phi}{\partial \varphi^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}\right)$

$$
\begin{aligned}
\frac{1}{\rho} \frac{d}{d \rho}\left(\rho \frac{d \phi(\rho)}{d \rho}\right)=0 & \Rightarrow \rho \frac{d \phi(\rho)}{d \rho}=a \\
& \Rightarrow \phi(\rho)=a \ln \rho+b
\end{aligned}
$$

SPHERICAL SYMMETRY $\quad \phi=\phi(r) \quad$ (NO θ and φ dependences)
In spherical coord.

$$
\nabla^{2} \phi=\left(\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \phi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \phi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \phi}{\partial \varphi^{2}}\right)
$$

$$
\begin{aligned}
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \phi(r)}{d r}\right)=0 & \Rightarrow r^{2} \frac{d \phi(r)}{d r}=a \\
& \Rightarrow \phi(r)=-\frac{a}{r}+b
\end{aligned}
$$

LAPLACE AND POISSON EQUATIONS

THEOREM 1 (12.2 in the book)
If ϕ has continuous second derivatives in the volume V and $\phi=0$ on the surface S that encloses V, then the solution to the Laplace equation $\nabla^{2} \phi=0$ is:

$$
\phi(x, y, z)=0 \text { in } V
$$

PROOF

We know: $\quad \nabla \cdot(f \bar{v})=(\nabla f) \cdot \bar{v}+f \nabla \cdot \bar{v}$
(ID2)

$$
\begin{aligned}
&\left.\begin{array}{c}
f=\phi \\
\bar{v}=\nabla \phi
\end{array}\right\} \Rightarrow \nabla \cdot(\phi \nabla \phi)=\nabla \phi \cdot \nabla \phi+\phi(\nabla \cdot \nabla \phi)=(\nabla \phi)^{2}+\underbrace{\phi \nabla^{2} \phi}_{=0} \\
& \Rightarrow \nabla \cdot(\phi \nabla \phi)-(\nabla \phi)^{2}=0 \Rightarrow \iiint_{V}\left[\nabla \cdot(\phi \nabla \phi)-(\nabla \phi)^{2}\right] d V=0 \\
& \underbrace{}_{\substack{\text { Gauss, hheorem } \\
\iint_{S} \phi \nabla \phi \cdot d \\
\text { because } \phi=0 \text { on } S}}-\iiint_{V} \int_{\geq 0}^{(\nabla \phi)^{2}} d V=0 \Rightarrow \phi=0
\end{aligned}
$$

DIRICHLET BOUNDARY CONDITIONS

$$
\begin{aligned}
\nabla^{2} \phi & =\rho \\
\phi & =\sigma \quad \text { on } S
\end{aligned}
$$

What can we say about the solution?

THEOREM 2 (12.3 in the book)

> The Poisson's equation $\nabla^{2} \phi=\rho$ in the volume V with boundary condition $\phi=\sigma$ on the surface S that encloses V has only one solution.

PROOF Let's assume that ϕ_{1} and ϕ_{2} are two solution:

$$
\begin{array}{rlll}
\nabla^{2} \phi_{1}=\rho & \text { and } & \phi_{1}=\sigma & \text { on } S \\
\nabla^{2} \phi_{2}=\rho & \text { and } & \phi_{2}=\sigma & \text { on } S
\end{array}
$$

Let's now define $\phi_{0}=\phi_{1}-\phi_{2}$

$$
\left.\begin{array}{rl}
\nabla^{2} \phi_{0} & =\nabla^{2}\left(\phi_{1}-\phi_{2}\right)=\nabla_{\nabla^{2} \phi_{1}}^{\rho}-\nabla_{\nabla^{2} \phi_{2}}^{\rho}=0 \\
\phi_{0} & =\underbrace{\phi_{1}}_{\sigma}-\underbrace{\phi_{2}}_{\sigma}=0 \text { on } S
\end{array}\right\} \text { Due to theorem 1: } \underbrace{\phi_{0}=0 \text { in } V}_{\begin{array}{c}
\Downarrow \\
\phi_{1}=\phi_{2} \text { in } \mathrm{V}
\end{array}}
$$

NEUMANN BOUNDARY CONDITIONS

$$
\begin{aligned}
& \nabla^{2} \phi=\rho \\
& \frac{\partial \phi}{\partial n}=\hat{n} \cdot \nabla \phi=\gamma \quad \text { on } S
\end{aligned}
$$

Neumann boundary condition

THEOREM 3 (12.4 in the book)

The solution to the Poisson's equation $\nabla^{2} \phi=\rho$ in V with boundary condition $\hat{n} \cdot \nabla \phi=\gamma \quad$ on S is not unique. If ϕ_{s} is a solution then $\phi_{s}+c$ is also solution where c is an arbitrary constant.

PROOF Let's assume that ϕ_{1} and ϕ_{2} are two solution:

$$
\begin{array}{rlll}
\nabla^{2} \phi_{1}=\rho & \text { and } & \hat{n} \cdot \nabla \phi_{1}=\gamma & \text { on } S \\
\nabla^{2} \phi_{2}=\rho & \text { and } & \hat{n} \cdot \nabla \phi_{2}=\gamma & \text { on } S
\end{array}
$$

Let's now define $\phi_{0}=\phi_{1}-\phi_{2}$

$$
\left.\begin{array}{l}
\nabla^{2} \phi_{0}=\nabla^{2}\left(\phi_{1}-\phi_{2}\right)=\overbrace{\nabla^{2} \phi_{1}}^{\rho}-\overbrace{\nabla^{2} \phi_{2}}^{\rho}=0 \\
\hat{n} \cdot \nabla \phi_{0}=\hat{n} \cdot(\underbrace{\nabla \phi_{1}}_{\gamma}-\underbrace{\nabla \phi_{2}}_{\gamma})=0 \text { on } S
\end{array}\right\} \Rightarrow \hat{n} \cdot \nabla \phi_{0}=0 \Rightarrow \phi_{0} \nabla \phi_{0} \cdot \hat{n}=0 \text { on } S \Rightarrow \iint_{S} \phi_{0} \nabla \phi_{0} \cdot \hat{n} d S=0
$$

THE CAPACITOR EXAMPLE

Laplace equation

$$
\nabla^{2} V=0
$$

Boundary conditions:

- Left electrode

$$
V=0
$$

(Dirichlet BC)

- Right electrode

$$
V=1 \quad \text { (Dirichlet } B C \text {) }
$$

- To solve the problem, COMSOL needs boundary conditions on the floow. For this example, insulating boundary condition on the floor have been applied: (Neumann)

$$
\bar{n} \cdot \nabla V=0 \quad \text { (Neumann } B C)
$$

Color plot: Potential V, Arrows: Electric field, Streamlines:
Electric field, Gold: Grounded and positive electrode

TARGET PROBLEM

A sphere has radius R and charge density $\rho=\rho_{c}$. Calculate:

- the electric field and
- the electrostatic potential inside and outside the sphere.

Spherical symmetry: $\quad \phi=\phi(r)$
Outside the sphere

$$
\begin{aligned}
& \nabla^{2} \phi_{E}=0 \Rightarrow \phi_{E}^{\text {out }}(r)=-\frac{a}{r}+b \\
& \bar{E}=-\nabla \phi_{E}=-\left(\frac{d \phi_{E}(r)}{d r}, \frac{1}{r} \frac{d \phi_{E}(r)}{d \theta}, \frac{1}{r \sin \theta} \frac{d \phi_{E}(r)}{d \varphi}\right) \Rightarrow E_{r}^{\text {out }}=-\frac{d \phi_{E}^{\text {out }}(r)}{d r}=-\frac{a}{r^{2}} \\
& \text { typically } \\
& \lim _{r \rightarrow \infty} \phi_{E}(r)=0 \quad \Rightarrow \quad b=0 \\
& \Rightarrow E_{r}^{\text {out }}=-\frac{d \phi_{E}^{\text {out }}(r)}{d r}=-\frac{a}{r^{2}}
\end{aligned}
$$

Inside the sphere

$$
\nabla^{2} \phi_{E}=-\frac{\rho_{c}}{\varepsilon_{0}} \quad \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \phi_{E}(r)}{d r}\right)=-\frac{\rho_{c}}{\varepsilon_{0}}
$$

multiplying by r^{2} and integrating:

$$
\begin{aligned}
& r^{2} \frac{d \phi_{E}(r)}{d r}=-\frac{\rho_{c} r^{3}}{3 \varepsilon_{0}}+c \Rightarrow \frac{d \phi_{E}(r)}{d r}=-\frac{\rho_{c} r}{3 \varepsilon_{0}}+\frac{c}{r^{2}} \Rightarrow \phi_{E}^{\text {in }}(r)=-\frac{\rho_{c} r^{2}}{6 \varepsilon_{0}}+d \\
& E_{r}^{i n}=-\frac{d \phi_{E}^{i n}(r)}{d r}=+\frac{\rho_{c} r}{3 \varepsilon_{0}}-\frac{c}{r^{2}} \\
& \begin{array}{l}
\text { Divergent at } r=0 \\
\text { NOT physical! } \Rightarrow c=0
\end{array}
\end{aligned}
$$

TARGET PROBLEM

We still have to calculate a and d !

Boundary conditions:

$$
\begin{aligned}
& E_{r}^{\text {out }}(R)=E_{r}^{\text {in }}(R) \Rightarrow-\frac{a}{R^{2}}=\frac{\rho_{c} R}{3 \varepsilon_{0}} \Rightarrow a=-\frac{\rho_{c} R^{3}}{3 \varepsilon_{0}} \\
& \phi_{E}^{\text {out }}(R)=\phi_{E}^{\text {in }}(R) \Rightarrow-\frac{\rho_{c} R^{2}}{6 \varepsilon_{0}}+d=\frac{\rho_{c} R^{3}}{3 \varepsilon_{0} R} \Rightarrow d=\frac{\rho_{c} R^{2}}{2 \varepsilon_{0}}
\end{aligned}
$$

$$
\phi_{E}^{\text {out }}(r)=\frac{\rho_{c} R^{3}}{3 \varepsilon_{0} r}
$$

$$
E_{r}^{\text {out }}=+\frac{\rho_{c} R^{3}}{3 \varepsilon_{0} r^{2}}
$$

$$
\phi_{E}^{\text {in }}(r)=\frac{\rho_{c} R^{2}}{6 \varepsilon_{0}}\left(3-\frac{r^{2}}{R^{2}}\right)
$$

$$
E_{r}^{i n}=+\frac{\rho_{c} r}{3 \varepsilon_{0}}
$$

