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SOME SPECIAL VECTOR FIELDS 
AND 

LAPLACE AND POISSON EQUATIONS 



TARGET PROBLEM 
Some example of vector field sources in nature 
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TARGET PROBLEM 

It is a single identifiable localized source with negligible extent. 
In some particular conditions,  
(for example: 3D space, emission homogenous in all directions, no  absorption and no loss…) 
the field produced by a point source decreases with   r 2 

Two identical but opposite sources (i.e. a source and a sink) 
separated by a distance d. 

The velocity field in a water vortex 
Magnetic field around a straight wire 
… 

• Point source (punktkällan) 
 

• Dipole source (dipolskällan) 

• Vortex (virveltråden) 
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POINT SOURCE 
A single identifiable localized source with negligible extent. 

Assumptions: 
1- The source is homogeneous in time 
     i.e. the flow of the water from the pipe 
     is constant: F=Volume/time=constant 
 
2- The emission is homogeneous in all 
     directions 
 
3- No absorption, no losses 
 
Then: 

22
ˆ

4ˆ4 r
r

F S v Fv e
rS r e ππ

= ⋅  ⇒ =
= 

Let’s calculate the velocity field of the water 
that flows from a thin pipe into a large pool. 

2
ˆ( ) r

qA r e
r

=In a 3D space, the vector field generated by a point source is: 
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POINT SOURCE 

The vector field generated by a point source located in the origin is: 

2
ˆ( ) r

qA r e
r

=

•    Electrostatic field produced by a point charge: 

2
0 0

1 ˆ
4 4r

q qE e with s
rπε πε

= =

+ 

When the source is not in the origin: 

3     '( ) '
'

      where is the position of tr rA r q r
r

he so c
r

ur e−
=

−

•   Gravitational field produced by a mass M: 

2

1 ˆrg GM e with s GM
r

= − = −

4 



POINT SOURCE 

The flux produced by a point source through a closed surface S 
(with S boundary of the volume V) is: 
 

2

0
ˆ

4r
S

q e dS
qr π


⋅ = 


∫∫

If the source is outside V 

If the source is inside V 

THEOREM 1 (11.1 in the book) 

PROOF 

1. The origin is outside V 
In V the field is continuously differentiable, 
so we can apply the Gauss’ theorem: 

2
ˆr

qdiv e
r

  = 
 

2 2
ˆ ˆr r

S V

q qe dS div e dV
r r

 ⋅ =  
 ∫∫ ∫∫∫

2
ˆ 0r

S

q e dS
r

⇒ ⋅ =∫∫

V 

S 

2
2 2

1 qr
r r r

∂  
 ∂  

0=
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2. The origin is inside V 
The field is not continuous in V, 
since the origin is a singular point. 
So the Gauss’ theorem cannot be applied. 

V 

S 

But we can divide V into two volumes: 

0V V Vε= +

2
ˆr

S

q e dS
r

⋅ =∫∫

V0 

Sε 

Vε 

Vε is a “small” sphere with radius ε 
with centre on the source (the origin).  
V0 is the remaining part of V 

n̂ε+

Gauss’theorem: 
 V0 does not  

contain the origin 

=0 
Area of the sphere 

with radius ε ˆ ˆrn eε = −

2
ˆr

S S S

q e dS
r

ε ε+ −

⋅ =∫∫

2 2
ˆ ˆr r

S S S

q qe dS e dS
r r

ε ε+ −

⋅ + ⋅ =∫∫ ∫∫

0

2 2
ˆ ˆr r

V S

q qdiv e dV e dS
r r

ε

  − ⋅ = 
 ∫∫∫ ∫∫ 2

ˆ ˆ( )r r
S

q e e dS
r

ε

− ⋅ − =∫∫ 2
S

q dS
ε

ε
=∫∫ 2

S

q dS
ε

ε
=∫∫ 2

2 4 4q qπε π
ε

=
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.q const
r

φ = − +The potential from a point source is: 

In fact: 
1 1ˆ ˆ ˆ

sinrgrad e e e
r r rθ ϕ
φ φ φφ

θ θ ϕ
∂ ∂ ∂

= + + =
∂ ∂ ∂

=0 =0 

ELECTROSTATIC FIELD FROM A POINT SOURCE 

The electrostatic field from a point source is 
2

0

1 ˆ
4 r

qE e
rπε

=

Therefore, the electrostatic potential is: 
0

1
4E

q
r

φ
πε

=

The flux of the electric field is: 
0S

qE dS
ε

⋅ =∫∫ where q is the total charge inside S 

The electrostatic potential is defined as: EE gradφ= −

1 ˆrq e
r r

∂  −  ∂  

THE POTENTIAL OF A POINT SOURCE 

2
ˆr

q e
r

=
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DIPOLE SOURCE 
Two identical but opposite sources (i.e. a source and a sink) 
separated by a distance d. 

- 

+ 

d 

P 

If r d>>
r r r+ −≈ ≈

cosr r d θ− +− ≈

The potential due to the dipole is: 

( ) r rq qr q
r r r r

φ − +

+ − − +

−−
= + =

θ 

r+ 

r 

r- 

Ideal dipole:  qd constant=

The dipole moment is defined as: p qd≡

The field generated by the dipole is: 

( ) 3

p rE r grad grad
r

φ ⋅ = − = − = 
 

( )

( ) ( )
3

3 5

3

p rr
r

p r rpE r
r r

φ ⋅
=

⋅
= − +

O 

z Assume that the origin is in the middle between  
the positive and the negative charge. 

2

cosdq
r

θ
≈

( )
3 5

3 p r rp
r r

⋅
− +

3

d rq
r
⋅

=
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DIPOLE SOURCE (example) 

- 

+ 

( )

( ) 2

cos

q q

dq

r

r

r

r

r

θφ

φ
+ −

=

= −

Not good  
approximation 

Good  
approximation 

( )E r gradφ=

perpendicular to  
the level surfaces! 
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z 

L 

VORTEX (or similar fields) 

Example: The velocity field in a water vortex, the magnetic field around a straight wire… 
The vector field generated by a vortex has the shape: ( ) ˆkA r eϕρ

=

The circulation of this vector field is 
 

ˆ 2
L

k e dr kNϕ π
ρ

⋅ =∫
where N is number of turns of L 
around the z-axis 
N is positive if the turn is along +L 
N is negative if the turn is along -L 

THEOREM 2 (11.2 in the book) 

Lε 

The field is singular on the z-axis. 
So the Stokes’ theorem cannot be applied directly. 

PROOF 

ˆ
L

k e drϕρ
⋅ =∫

L1 

Closed path that does not contain the z-axis. 
We can apply the Stokes’ theorem! 

ˆdr e dϕε ϕ= −

We consider a circular path Lε with radius ε 

2

0
ˆ ˆk e e d

π

ϕ ϕε ϕ
ε

= ⋅∫

1 1

ˆ
L L L L L

k e dr
ε ε

ϕρ+ − + −

⋅ =∫
1 1

ˆ ˆ
L L L L L

k ke dr e dr
ε ε

ϕ ϕρ ρ+ + − −

⋅ + ⋅ =∫ ∫

ˆ ˆ
S L

k krot e dS e dr
ε

ϕ ϕρ ρ−

 
⋅ + ⋅ 

 
∫∫ ∫ 2 kπ=
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WHICH STATEMENT IS WRONG? 

1- The vector field      is produced by a point source (yellow) 
 
 
2- The vector field           can represent the velocity field of a vortex    
     (red) 
 
3- The flux of the field from a point source is always   (green) 

 
 
 
 
4- The circulation                     if L has only one turn around z (blue) 

 

2
ˆ 4r

S

s e dS s
r

π⋅ =∫∫

2
ˆr

q e
r

ˆk eϕρ

ˆ 2
L

k e dr kϕ π
ρ

⋅ =∫
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LAPLACE AND POISSON EQUATIONS 
TARGET PROBLEM 

A sphere has radius R and charge density ρ=ρc. 

y 

x 

z 

0

c

E

E

E

ρ
ε

φ

∇ ⋅ =

= −∇

From the electromagnetic theory course: 

Therefore: 
2

0

c
E

ρφ
ε

∇ = −

This equation is an example of: 
 
    Laplace’s equation 
 
 
    Poisson’s equation 

2 0φ∇ =

2φ ρ∇ =

Calculate: 
  - the electric field and  
  - the electrostatic potential 
 
inside and outside the sphere.  
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SYMMETRIC SOLUTIONS  
OF THE  

LAPLACE EQUATION                    

( ) ( )
2

2 0
d x

x ax b
dx
φ

φ= ⇒ = +

( ) ( )

( )

1 0

ln

d dd a
d d d

a b

φ ρ φ ρ
ρ ρ

ρ ρ ρ ρ

φ ρ ρ

 
= ⇒ = 

 
⇒ = +

( ) ( )

( )

2 2
2

1 0
d r d rd r r a

r dr dr dr
ar b
r

φ φ

φ

 
= ⇒ = 

 

⇒ = − +

2 0φ∇ =

2 2 2
2

2 2 2x y z
φ φ φφ

 ∂ ∂ ∂
∇ = + + ∂ ∂ ∂ 

In cartesian coord. 

2 2
2

2 2 2

1 1
z

φ φ φφ ρ
ρ ρ ρ ρ ϕ

  ∂ ∂ ∂ ∂
∇ = + +  ∂ ∂ ∂ ∂  

In cylindrical coord. 

2
2 2

2 2 2 2 2

1 1 1sin
sin sin

r
r r r r r

φ φ φφ θ
θ θ θ θ ϕ

 ∂ ∂ ∂ ∂ ∂   ∇ = + +    ∂ ∂ ∂ ∂ ∂    

In spherical coord. 

( )xφ φ=PLANAR SYMMETRY (NO y and z dependences) 

( )φ φ ρ=CYLINDRICAL SYMMETRY (NO ϕ and z dependences) 

( )rφ φ=SPHERICAL SYMMETRY (NO θ and ϕ dependences) 
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= 

( )2 0
S V

dS dVφ φ φ∇ ⋅ − ∇ =∫∫ ∫∫∫
Gauss’ theorem 

LAPLACE AND POISSON EQUATIONS 

If  φ has continuous second derivatives in the volume V 
 

and φ =0 on the surface S that encloses V, then the solution 
 

to the Laplace equation                is: 
 

                       φ (x,y,z)=0   in  V 

2 0φ∇ =THEOREM 1 (12.2 in the book) 

PROOF 

( ) ( )f v f v f v∇ ⋅ = ∇ ⋅ + ∇ ⋅We know: (ID2) 

f
v

φ
φ

= 
= ∇  =0 

( ) ( )2 0φ φ φ⇒ ∇ ⋅ ∇ − ∇ = ( ) ( )2 0
V

dVφ φ φ ⇒ ∇ ⋅ ∇ − ∇ = ∫∫∫

=0  
because φ=0 on S 

0≥

( )φ φ⇒ ∇ ⋅ ∇ = ( )2 2φ φ φ∇ + ∇( )φ φ φ φ∇ ⋅∇ + ∇ ⋅∇ =

0φ⇒ =
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DIRICHLET BOUNDARY CONDITIONS 

The Poisson’s equation    in the volume V  
   with boundary condition φ=σ on the surface S 
   that encloses V has only one solution. 

2φ ρ∇ =
THEOREM 2 (12.3 in the book) 

2

on S
φ ρ
φ σ

∇ =
=

Dirichlet boundary condition 

What can we say about the solution? 

PROOF Let’s assume that φ1 and φ2 are two solution: 
2

1 1and on Sφ ρ φ σ∇ = =
2

2 2and on Sφ ρ φ σ∇ = =

Let’s now define φ0=φ1-φ2 

( )2 2
0 1 2φ φ φ∇ = ∇ − =

ρ ρ 

σ σ 

Due to theorem 1:   φ0=0 in V  

⇒
 

φ1=φ2 in V 

2 2
1 2φ φ∇ − ∇ 0=

0 on Sφ = 1 2φ φ− 0=
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NEUMANN BOUNDARY CONDITIONS 
2

n̂ on S
n

φ ρ
φ φ γ

∇ =
∂

= ⋅∇ =
∂

Neumann boundary condition 

What can we say about the solution? 

PROOF Let’s assume that φ1 and φ2 are two solution: 
2

1 1ˆand n on Sφ ρ φ γ∇ = ⋅∇ =
2

2 2ˆand n on Sφ ρ φ γ∇ = ⋅∇ =
Let’s now define φ0=φ1-φ2 

0n̂ on Sφ⋅∇ =

ρ ρ 

γ γ 

The solution to the Poisson’s equation               in V  
   with boundary condition                      on S 
   is not unique.  If φs is a solution then φs+c is also solution  
   where c is an arbitrary constant. 

2φ ρ∇ =
THEOREM 3 (12.4 in the book) n̂ φ γ⋅∇ =

0 0 ˆ0
S

ndSφ φ= ∇ ⋅∫∫

0ˆ 0n φ⋅∇ =⇒ 

Gauss’ theorem see proof of  
theorem 1 

0≥

0 0

1 2

0 .
.

const
const

φ φ
φ φ

⇒ ∇ = ⇒ =
⇒ = +

( )2 2
0 1 2φ φ φ∇ = ∇ − = 2 2

1 2φ φ∇ − ∇ 0=

( )1 2n̂ φ φ⋅ ∇ − ∇ 0=
0 0 ˆ 0n on Sφ φ⇒ ∇ ⋅ = 0 0 ˆ 0

S

ndSφ φ⇒ ∇ ⋅ =∫∫

0 0
V

dVφ φ= ∇ ⋅ ∇∫∫∫ ( )2
0

V

dVφ= ∇∫∫∫
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THE CAPACITOR EXAMPLE 

02 =∇ V
Laplace equation 

Boundary conditions: 
 
 Left electrode 

0=V
 Right electrode 

1=V
 To solve the problem, 

COMSOL needs boundary 
conditions on the floow. For 
this example, insulating 
boundary condition  

     on the floor have been  
     applied: (Neumann) 

0=∇⋅ Vn
Color plot: Potential V, Arrows: Electric field, Streamlines: 
Electric field, Gold: Grounded and positive electrode 
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Thanks to Pablo 
(and COMSOL) 

(Dirichlet BC) 

(Dirichlet BC) 

(Neumann BC) 



Thanks to Pablo 
(and COMSOL) 



Thanks to Pablo 
(and COMSOL) 



TARGET PROBLEM 

A sphere has radius R and charge density ρ=ρc. 
Calculate: 
  - the electric field and  
  - the electrostatic potential 
inside and outside the sphere.  

y 

x 

z 

2 0Eφ∇ =

Outside the sphere 

Spherical symmetry: ( )rφ φ=

( )out
E

ar b
r

φ⇒ = − +

2

0

c
E

ρφ
ε

∇ = −

Inside the sphere 
( )2

2
0

1 E cd rd r
r dr dr

φ ρ
ε

 
= − 

 

( ) 3
2

03
E cd r rr c
dr

φ ρ
ε

= − +

( )in
Ein

r

d r
E

dr
φ

= −

( ) ( ) ( )1 1, ,
sin

E E E
E

d r d r d r
E

dr r d r d
φ φ φ

φ
θ θ ϕ

 
= −∇ = − 

 

( )
2

out
Eout

r

d r aE
dr r

φ
⇒ = − = −

( )lim 0 0Er
r bφ

→∞
= ⇒ =

typically 

multiplying by r2  
and integrating: 

( )
2

03
E cd r r c
dr r

φ ρ
ε

⇒ = − + ( )
2

06
in c
E

rr dρφ
ε

⇒ = − +

2
03

cr c
r

ρ
ε

= + −

Divergent at r=0 
NOT physical! ⇒ c=0 18 



TARGET PROBLEM 

y 

x 

z 

We still have to calculate a and d! 
Boundary conditions: 

2
03

cRa
R

ρ
ε

⇒ − =
3

03
cRa ρ
ε

⇒ = −

( )
3

03
out c
E

Rr
r

ρφ
ε

=

( )
2 2

2
0

3
6

in c
E

R rr
R

ρφ
ε

 
= − 

 

3

2
03

out c
r

RE
r

ρ
ε

= +

03
in c
r

rE ρ
ε

= +

( ) ( )out in
r rE R E R=

( ) ( )out in
E ER Rφ φ=

2 3

0 06 3
c cR Rd

R
ρ ρ

ε ε
⇒ − + =

2

02
cRd ρ
ε

⇒ =

φE 

r R 

Εr
 

r R 
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